J Supercomput (2009) 47: 171-197
DOI 10.1007/s11227-008-0186-0

Matrix-based streamization approach for improving
locality and parallelism on FT64 stream processor

Xuejun Yang - Jing Du - Xiaobo Yan - Yu Deng

Published online: 16 March 2008
© Springer Science+Business Media, LLC 2008

Abstract FT64 is the first 64-bit stream processor designed for scientific computing.
It is critical to exploit optimizing streamization approaches for scientific applications
on FT64 due to the inefficiency of direct streamization approach. In this paper, we
propose a novel matrix-based streamization approach for improving locality and par-
allelism of scientific applications on FT64. First, a Data&Computation Matrix is built
to abstract the relationship between loops and arrays of the original programs, and it
is helpful for formulating the streamization problem. Second, three key techniques
for optimizing streamization approach are proposed based on the transformations of
the matrix, i.e., coarse-grained program transformations, fine-grained program trans-
formations, and stream organization optimizations. Finally, we apply our approach to
ten typical scientific application kernels on FT64. The experimental results show that
the matrix-based streamization approach achieves an average speedup of 2.76 over
the direct streamization approach, and performs equally to or better than the corre-
sponding Fortran programs on Itanium 2 except CG. It is certain that the matrix-based
streamization approach is a promising and practical solution to efficiently exploit the
tremendous potential of FT64.

Keywords FT64 - D&C Matrix - Streamization - Program transformation - Stream
organization
1 Introduction

The stream processors are designed to address the processor-memory gap through
streaming technology [1-4]. They have shown tremendous performance advantages

X. Yang - J. Du (X) - X. Yan - Y. Deng

PDL, School of Computer, National University of Defense Technology, Changsha, Hunan, 410073,
China

e-mail: jdstarry @yahoo.com.cn

@ Springer


mailto:jdstarry@yahoo.com.cn

172 X. Yang et al.

e 2.4GBJs Host Stream

= DDR Interface || Controller | |

5 S39BS Memory : I l

£ Controller L [= 4 z
B 8GBis § L $GB/s| 2 gq&ﬂi’ s
g Stream |16GBs Stream =3 3
3 Memory Register File g = g

Controller

H

G4GB/s

e -
control path

data |1atﬁ

[l i
- 749)sN[D)
[19)sN[)
011N
J2[[0JUO))
0.1

Fig. 1 FT64 stream architecture

in the domains regarding signal processing, multimedia and graphics [5-7]. Yet it
has not been sufficiently validated whether stream processor is efficient for scientific
computing.

FT64 and FT64-oriented compiler optimizations are presented to address this
problem. FT64 is the first 64-bit stream processor for scientific computing [8], which
has a peak performance of 16GFLOPS. Its instruction set architecture (ISA) is op-
timized for scientific computing. FT64 consists of four ALU clusters and a three-
level memory hierarchy, which includes LRF, SRF, and off-chip memory used to
keep so many ALUs saturated during stream processing. Figure 1 diagrams the FT64
stream architecture. Like other stream processors, FT64 supports stream program-
ming model [9, 10]. It expresses a program as a set of computation kernels which
produce and consume data streams, which can be classified into two types, namely
basic streams and derived streams. Any modification to the derived stream results in
additional memory access overhead. This explicit stream programming model incurs
heavy burden on inheriting legacy scientific programs [11]. Therefore, it is crucial
to explore efficient method of mapping scientific programs to stream programs on
FT64, namely streamization technique.

The prior researches show that loops and arrays are the fundamental structures of
most scientific applications. Thus, the development of stream programs on FT64 fo-
cuses on streamizing loops of original programs. A direct streamization process for
a given program is as follows: inner perfect loop nests are transformed to kernels,
array variables are mapped to basic streams, and array references are looked upon
as derived streams. Unfortunately, the direct streamization approach can not exploit
sufficient locality and parallelism of the generated stream programs on FT64, and,
therefore, it is inefficient and unpractical. To address the problem, this paper pro-
poses a matrix-based streamization approach for improving locality and parallelism
of scientific programs on FT64 stream processor. The proposed streamization ap-
proach has been implemented.in SCompiler, which is a compiler used to map Fortran
programs to FT64. The contributions of the research lie in four aspects:

@ Springer



Matrix-based streamization approach for improving locality 173

e The Data&Computation Matrix (D&C Matrix). It is proposed to abstract the rela-
tionship between loops and arrays of the original program, and help formulate the
streamization problem. Then based on the matrix, three key techniques for opti-
mizing streamization are proposed as follows.

e Coarse-grained program transformations. The technique performs global program
transformations among loops in terms of the column transformations of the original
program’s D&C Matrix, so as to improve the locality in LRF and SRF, computa-
tional intensiveness, and parallelism of the generated stream program.

e Fine-grained program transformations. The technique reorders computations and
data within loops by shortening the computation distances and data distances in
the original program’s D&C Matrix, so as to optimize the locality in kernels, com-
putational intensiveness, and derived streams of the generated stream program.

e Stream organization optimizations. The technique focuses on selecting optimum
basic streams and reusing derived streams based on analyzing the array references
of D&C Matrix, which is optimized by the above two techniques. So, the generated
stream programs can achieve low memory overhead and high locality in SRF.

We perform an evaluation of the proposed matrix-based streamization on FT64,
compared with the direct streamization approach on FT64 and the original programs
on Itanium 2. The experimental results of ten typical scientific application kernels
show that the optimizing streamization approach achieves an average speedup of
2.76 over the direct streamization approach, and performs equally to or better than
the original programs on Itanium 2 except CG. It is certain that the matrix-based
streamization approach is a promising and practical solution to efficiently exploit the
tremendous potential of FT64.

The remainder of this paper is organized as follows: Sect. 2 presents the overview
of our approach; Sect. 3 presents the key techniques of matrix-based streamization
process. The experiments are shown in Sect. 4. Section 5 presents related work. In
Sect. 6, we conclude the paper and discuss some future works.

2 Overview of optimizing streamization
2.1 FT64 processing system

FT64 is an access/execute decoupled processor [8]. Each ALU cluster shown in
Fig. 2 is composed of four floating-point multiply-accumulate units (FMACs), a di-
vide/square root unit (DSQ) and their local register files (LRFs), a 256-word scratch-
pad memory (SP) used for local arrays, etc. The memory hierarchy of FT64 includes

Fig. 2 The microarchitecture of SRF

ALU clusters 0 —
bank 0 L FMAC DSQ
et o] (G E01

ks o

Inter-cluster network

@ Springer



174 X. Yang et al.

LREF, stream register file (SRF), and off-chip memory. The LRFs directly feed those
arithmetic units inside the clusters with their operands. Its total capacity is 19 KB
and total bandwidth is 544 GB/s. The SRF is a software-controlled memory hierarchy
which is used to buffer the input/output and intermediate streams during execution.
It is in the size of 256 KB and divided into four banks which correspond to the four
clusters, respectively. The off-chip memory is controlled by a stream memory con-
troller (SMC) and a DDR memory controller (DDRMC), which cooperate to load and
store derived streams. The SMC operates at 500 MHz with the bandwidth of 16 GB/s
to the SRF, and 8 GB/s to the DDRMC. The DDRMC works at 200 MHz with the
bandwidth of 6.4 GB/s.

FT64 supports stream programming model, such as StreamC/KernelC [12-14].
In the model, stream applications consist of stream-level programs and kernel-level
programs. A stream-level program specifies the order in which kernels execute and
organize data into sequential streams that are passed from one kernel to the next.
A kernel-level program is structured as a loop that processes elements from each input
stream and generates outputs for each output stream. Every data stream is a sequence
of data records with the same type, which can be classified into two kinds: basic
streams and derived streams. Basic stream defines a new sequence of data records
while derived stream refers to all or part of an existing basic stream. Any modification
to the derived stream results in memory overhead. However, there are a few stream
versions of scientific programs currently. And the simple and direct streamization of
scientific programs is inefficient. Therefore, it is necessary to explore an optimizing
streamization approach to achieve significant performance improvements on FT64.

2.2 Basic idea

In this section, we will take the program in Fig. 3 and Fig. 4 as an example to illustrate
the basic idea of the optimizing streamization.

First, Fig. 3 shows an example of the direct streamization process. The top left
of the figure gives an example of the original FORTRANOS5 program, which consists
of three loop nests (L1, Lo, L3) and four arrays (a, b, ¢, d). The other parts of the
figure give the stream-level program and kernel-level program generated by directly
mapping the original program to FT64. This direct streamization transforms the three
loops to three kernels (k1, k2, k3), respectively, maps all arrays to basic streams (a_s,
b_s, c_s, d_s) whose length are according to the total length of the corresponding
arrays, and generates derived streams from all array references within the loop based
on the basic streams. For example, as defined in Fig. 3, stream a_s is a basic stream
with the length of N + 1, which is exactly transformed from array a. The input stream
al and a2 of kernel k1 and k2 are both defined as derived streams of basic stream a,
which correspond to array references a(i) and a(i + 1), respectively.

Obviously, the new generated stream program exposes many problems. First, ex-
pressing each loop in the original program to an individual kernel leads to overfull
amount of kernels and small kernel granularity, and thus the computations in a kernel
are too few to exploit multi-level parallelism effectively. Second, without centraliz-
ing affinitive computations.and data, the program loses the locality in LRF and SRF
and achieves low computational intensiveness. Thus, the arithmetic units cannot be

@ Springer



Matrix-based streamization approach for improving locality

175

Fig.3 An example of direct
streamization

Original program
L;:doi=2,N
b(i)=a(i)+2
Ly:doi=2,N
c(i)=a(it1)*6
L;:doi=2, N
d(i)=b(i-1)-3

]!

Kernel programs

loop_stream(al){
al >>tl;
2=t +2;
bl <<12;

} k1

loop_stream(a2){
a2 >>tl;
2=t *6;
cl <<1t2;

) k2

loop_stream(b2){
b2 >>1tl;
2=tl-3;
dl <<1t2;

} k3

Stream program
inta_array[N+1];
// declare basic stream
stream<dfloat>a s(N+1);
stream<dfloat> b_s(N);
stream<dfloat> ¢_s(N);
stream<dfloat> d_s(N);
// load stream
streamLoad(a_s, a_array);
/] declare derived stream
stream<dfloat> al(N-1);
stream<dfloat> a2(N-1);
stream<dfloat> b1(N-1);
stream<dfloat> b2(N-1);
stream<dfloat> c1(N-1);
stream<dfloat> d1(N-1);
streamCopy(a_s(1, N), al);
/I inputs outputs
k1 (al, bl);
streamCopy(bl, b_s(1, N));
streamCopy(a_s(2, N+1), a2);
k2 (a2, cl);
streamCopy(cl, ¢_s(1, N));
streamCopy(b_s(0, N-1), b2);
k3 (b2, dl);
streamCopy(dl, d s(1,N));

kept saturated during stream processing. Third, generating basic streams and derived
streams without optimizing practical array reference patterns causes abundant derived
streams, which impose great pressure on memory accesses [15].

To address the problems mentioned above, the optimizing streamization process of
the example program is proposed, which is shown in Fig. 4. First, loop reordering and
loop fusion are used here to reduce loops and tighten the reuse distance of array b.
Second, loop alignment is used to unify the different references of the array a and b,
so that the array references are reduced by 33% (2/6). Finally, since the original
program only accesses the subsets of all arrays, the basic streams are organized based
on these subsets in stead of the whole arrays. Note that the nonloop statements needn’t
be mapped to the stream forms here. Therefore, compared with the result in Fig. 3, the
generated stream program in Fig. 4 achieves many improvements as follows. First,
the number of kernels is reduced to 1/3, i.e., only one kernel is produced here. Second,
suppose N = 2, the total size of basic streams is (4 x N — 8) x 8 B =252 B, which is
96% of that of the basic streams from direct streamization. Third, the derived streams
are reduced from 6 to 0, namely the derived streams no longer exist in the optimized
stream program.

In brief, the basic idea of the optimizing streamization is to firstly insert program
transformation process to produce stream architecture oriented intermediate codes.
Then apply optimizing strategy for stream organization in streamization process. The
direct and _optimizing streamization processes are shown in Fig. 5. The targets of
optimizing streamization are as follows:

@ Springer



176

X. Yang et al.

Fig. 4 Optimizing

streamization for the example

Original program
Ll:doi=2,N

b(i)=a(i)+2
L2: do i_:2, N

L3:doi=2,N
d(i)=b(i-1)-3

1. loop reorderingi

Stream program

Non-laop Statements,
int a_array[N-2];

/I declare basic stream
stream<dfloat> a(N-2);
stream<dfloat> b(N-2);
stream<dfloat> ¢(N-2);
stream<dfloat> d(N-2);

Ll:doi=2,N /I load stream
L3 dobi(i);%lﬁz streamLoad(a, a_array);
: d(i):’b(i-l)-3 /I call kernel
L2:doi=2, N /I inputs outputs
c()=a(i+D*6| |kl (a, b, ¢, d);
2. loop fusion
L1:doi=2,N

b(i)=a(i)+2

d(i)=b(i-1)-3 Kernel program
c(i)=a(i+1)*6 loop_stream(a){
3. loop alignmenti a>>tl;
42)-b(1)3 G
L1:doi=2, N-1 A=t1 *6:
b(i)=a(i)+2 #“=tl *6;
d(i+1)=b(i)-3 b<<t2;
c(i)=a(i)*6 — d<<t3;
b(N)=a(N)+2 /| c<<t4
c(N)=a(N+1)*6 } ki1

streamization

» _Stream program

(a) direct streamization

igi e format i
Original program m Optimal program Stream program

(b) optimizing streamization

‘ Original program }

Fig. 5 The direct and optimizing streamization processes

e By performing program transformations among loops, data reuse within and be-
tween loops is enhanced and loop granularity is enlarged, so as to improve the
locality in LRF and SRF and parallelism of the generated stream programs.

e By performing program transformations within loops, affinitive computations and
data are centralized and various references on the same array are optimized, so as
to achieve high computational intensiveness, high LRF locality, and low derived
stream overheads of the generated stream programs.

e By optimizing stream organizations in streamization process, optimum basic
streams and derived streams are formed, so as to improve the memory bandwidth
utilization of the generated stream programs.

2.3 D&C Matrix

The proposed.optimizing streamization.approach relates to computation and data re-
ordering within loops, transformations among loops, and data reference pattern for

@ Springer



Matrix-based streamization approach for improving locality 177

L L ... [ ... Computation
. L - ,], —_ ,2, . (Loop iteration) }dicdistance(x,y)—b{
D]im” my, ‘---‘X‘---‘Z‘---‘ ‘...‘
Dy imy : *
o
: } Data D
D, | m, [eee]c]eee [d]ees] e eee]
s
I

‘«Ddistance(c,dH
— The Mapping

Fig. 6 The D&C Matrix and the mapping in the matrix

Fig. 7 D&C Matrix of the Lz L3
example program - A
a m,
b UGS
c my,
d My3

stream organization. Based on the loops, computations and data information of a
given program, our approach builds a matrix called Data&Computation Matrix (D&C
Matrix) to formulate the relationship between these informations, as shown in Fig. 6.
The matrix shows the reference pattern between each iteration of all loops and each
array. Each raw of the D&C Matrix represents an array and each column of the matrix
describes the reference pattern of a loop. Suppose D; represents a sequential layout
of the array in the ith row and L ; denotes the loop in the jth column, the item in the
ith row and the jth column position in the D&C Matrix corresponds to a mapping
denoted as m;; : D; — I, where [ is an iteration vector which presents a computa-
tion sequence according to the data layout. In other words, m;;(d) for d € D; is the
iteration numbers in L ; that access d. For the original program given in Fig. 4, the
corresponding D&C Matrix is organized as shown in Fig. 7. Note that when each
array in the nest is referenced many times, the mapping m;; maps multiple data to
multiple iterations. The right part of Fig. 6 gives an example of this mapping such that
mij(c) ={x,y}, mij(d) =y and m;j(e) =z for ¢,d, e € D; and {x, y}, {y}, {z} € I.
To afford facilities for clarifying our approach, we express the reverse mapping of
m;j as ml.;l (y) ={c, d}. In order to explain our technique, it is necessary to introduce
the following definitions.

Definition 1 Suppose that two iterations x and y of a loop access the same data, the
computation distance Cdistance(x, y) is defined as the number of iterations between
x and y such that Cdistance(x, y) =y — x.

Definition 2 Suppose that data ¢ and d are accessed successively, the data distance
Ddistance(c, d) is defined as the interval between the two data layouts such that
Ddistance(c,d) =d — c.

Each item in the D&C Matrix is a mapping that presents some significant infor-
mation.of the stream. reference pattern, including the temporal locality, the spatial

locality, the reference order, and the stream organization. For instance, data D in the

@ Springer



178 X. Yang et al.

right part of Fig. 6 presents the successive layout like stream layout so that we can
loop upon D as a basic stream. The Cdistance(x, y) expresses the temporal locality
of record ¢ and Ddistance(c, d) denotes the spatial locality of stream D. Furthermore,
we treat loop iteration spaces unrolling as the stream organization pattern, that is, the
data sequence accessed by all the ordinal iterations can be organized as a stream. To
clarify distinctly, we formulate the approach of stream organization as follows, where
ORG(i, j) is the stream organization of the ith array accessed by the jth loop in the
D&C Matrix, the symbol “Z+ ” denotes the connection of different data sequences,
max(x) is the maximum iteration of the loop body

max(x)

ORG(i, j) = Z+m;jl(x|x el (1)
x=0

The D&C Matrix, once built, contains all the memory access information be-
tween all loops and all arrays. Based on the transformation of this matrix, optimizing
streamization can be implemented easily and efficiently.

3 Matrix-based optimizing streamization

The work of this paper focuses on the streamization process in SCompiler, which is
a compiler to map Fortran programs to low-level codes executed on FT64. Figure 8
gives the framework of SCompiler. And the right part of this figure shows the steps of
the matrix-based streamization process (grey part in the framework). First, after the
front-end parsing, the D&C Matrix like Fig. 6 is produced. Then taking the matrix
representation as input, some architecture-oriented program transformations are used
to generate the optimal Fortran intermediate code. Finally, optimizing streamization
is performed to map the intermediate code to stream program. We will discuss the
implementation of matrix-based streamization process in detail, including coarse-
grained program transformations, fine-grained program transformations, and stream
organization optimizations.

3.1 Coarse-grained program transformations

Coarse-grained program transformations regard a loop as an atomic group, and per-
form global loop transformations among loops [16—18], such as loop reordering, loop
fusion, arrays unifying, strip-mining, etc. This approach aims at enabling array reuse
between loops, improving locality within loops, and enlarging the loop granularity

Fortran .o Stream Code Resource Low-level Code Executable
code "{ Parser HStreamlzatlon Generation Allocation Generation Code

Genertion Transformation Code Generation

D&C Matrix Program Fortran Intermediate Optimizing
Streamization

Fig. 8 The framework of SCompiler

@ Springer



Matrix-based streamization approach for improving locality 179

based on the column transformation of the original program’s D&C Matrix. There-
fore, the generated stream program can achieve high locality in LRF and SREF, high
computational intensiveness, and fine kernel granularity to exploit ample parallelism.

3.1.1 Loop reordering

The producer-consumer locality in SRF is exposed by forwarding the streams pro-
duced by one kernel to the subsequent kernels [15]. In order to make the neighbor-
ing kernels be provided with reused streams, the relative order of the corresponding
loops in the D&C Matrix needs to be reordered for high computational intensive-
ness and fine locality in SRF. For instance, shown in Fig. 4, loop L3 is shifted up by
loop reordering, in order to tighten the production and consumption of array b. Loop
reordering must satisfy safety and profitability considerations. The safety refers to
reordering loops can not violate ordering constraints implied by dependences. The
profitability lies on the data reuse between loops after reordering loops. A minimal
requirement for profitability is that loop reordering should not destroy the original
data reuse in SRF. To guarantee safety and profitability, some ordering constraints
need to be proposed.

First, we should reorganize data reuse between loops, which is the basis of loop
reordering. Since there is a data reuse from loop L; to loop L; when dependences
exist between the two loops, we can analyze the D&C Matrix of the original program
to obtain the reuse between loops. Concretely, for loop L; and L, if my Nmy # @,
we say that L; and L ; reuse array D,. Thus, the determination of data reuse between
L; and L; (denoted as L;5L ;) can be concluded as the following formula. That is,
L;5L; when both of them access a certain array (Dy)

Hx(mxiﬂmxj7é¢)—> Li(SLj 2)

As shown in Fig. 7, since m11 Nm12 # ¢ and mo N mo3 # ¢, we can conclude
L18L,, L16L3 according to formula (2). It is convenient to characterize loop reuse
by the distance between loops. Thus, we define the reuse distance between loops.

Definition 3 Suppose that there is a reuse between loop L; and L ;, the reuse distance
d(i, j) is defined as the total length of all arrays in the two loops, namely d (i, j) =
> len(Dy)|my; U my; # ¢, where len(D,) denotes the length of array D,.

Second, ordering constraints are proposed based on the definition of exchangeable
loops.

Definition 4 The neighboring loops L; and L ; are defined as exchangeable loops if
there is no data reuse between the two loops. The exchangeable loops are denoted as
L i <> L./'.

As shown in Fig. 7, L, <> L3. Obviously, reordering the exchangeable loops can
not influence the reuse order in the original program. This is the primary safety de-
termination.of loop.reordering. But it is not sufficient to guarantee profitability. The
requirement for profitability is that reordering should not increase the original reuse

@ Springer



180 X. Yang et al.

) | 1 )

K ) Ky I ] K, I

. 1 . N 1 1 . . 1

L] see I.:]] ) L]1+l eee L]Z 1 . ILJ(t.[)+] e LJ' y

) 1 1 1

D, mj,; my 1 My j1+1 my; A1y je-1)+1 myje
1 1 1 1

D; | my; my 1y Myji+1 mpj W2 5G-1)+1 myj
1) 1 1 1

LI 1 o 1 1

) 1 1 1

) 1 1 1

1 1 1 1

D; m; m;;1 » Myji1+1 myj M t-1)+1 mye 1
1 1 1 1

« 1 1 1 1

Fig. 9 Kernel partition based on the new matrix

distance, or the loop reordering is not profitable. Thus, the definition of potentially
adjacent loops is proposed.

Definition 5 Suppose loop L;, L, Ly are executed in serial. If L;6 Ly and L; <> Ly,
L; and Ly are defined as potentially adjacent loops. Meanwhile, the reuse between

L and Ly are defined as potentially adjacent reuse, which is denoted as L; ? Ly.

Loop reordering is used to transform the data reuses in the original program to
potentially adjacent reuses, so as to improve the computational intensiveness and
data reuse between loops. That is, we perform potentially adjacent reuse guided loop

reordering on the original program. As for the above example, L <<§)L3. Thus, we
need to reorder the loops in the program.

3.1.2 Loop fusion

To enhance computational intensiveness, we merge different regions about the same
array into a large loop based on the D&C Matrix, and thereby temporal locality in
the generated kernel can be increased and the memory delays can be overlapped
with computations easily. On the other hand, we need to combine loops into larger
loops as many as possible to enlarge the kernel granularity, and thus the parallelism
in kernels can be increased via fully utilizing multi-ALUs on FT64. To implement
this optimization, we perform matrix distribution and matrix fusion on the loops.
Arbitrary loop L; and L are fused when L;SL ;.

Then a new D&C Matrix with fine loop granularity is yielded, and we can partition
all loops into ¢ kernels denoted K;, respectively, according to the new matrix, which
is diagrammed in Fig. 9. For example shown in Fig. 4, loop fusion gives a common
iteration space where the consumption of a value b[i] can be made nearer from its
production, so as to improve computational intensiveness and loop granularity. To in-
crease the opportunities for this optimization, loop distribution is sometimes applied
to extract perfect loop nests from an imperfect nesting.

3.1.3 Array transformations between loops

First, to achieve the stream reuse between successive kernels, we need to alter the
arrays’ region to unify the arrays in successive loops. The idea given in Fig. 10 em-
phasizes.on.adding or.reducing some.additional data of some arrays with the variety
of the corresponding computations.

@ Springer



Matrix-based streamization approach for improving locality 181

Fig. 10 Unifying arrays

between loops Lizdoi=1,100 L dgzj 1,100
A(l) = 1)=
L,: doj=10,90 Ly:doj=1, 1.00
=A(j) =A()
(import redundant iterations)
L] Ll
4 A 4 y
array A : > array A
4 4 A h 4 A A
L, L'
Fig. 11 [Instruction scheduling Li:doi=1,60 Li:doi=1,30
A(i) = A(i) =
L,: doj=30,90 L,": doj=30,90
=A(j) if j< 60
A(i) =
L, L, =A()
Y A A AA
array A —>| array A
4 y 4 A 4
L, L)'

Then we can transfer some loop instructions in the previous loop to the next loop,
when this loop exhibit data dependency with next loop, which is shown in Fig. 11.
This idea can reduce the production of intermediate results to guarantee SRF capacity
enough and enhance SRF reuse. The essence of this transformation is to distribute
the loops in different kernels and then to fuse partial loops to a kernel based on data-
centric analysis.

3.1.4 Strip-mining

Most scientific programs often face the same memory access bottleneck for they can’t
fit all their streams in the SRF, which harms the SRF locality. To address the problem,
it is necessary to partition long streams into segments known as strips, such that all of
the intermediate state for the computation on a single strip fits in the SRF [10], thus
avoiding the memory transfers. In order to implement this optimization, we perform
strip-mining on the original programs to enhance part reuse between loops [18]. An
example is shown in Fig. 12, suppose array A is larger than SREF, strip-mining is used
here to reuse strips of array A so that the generated stream program can achieve high
locality in SRF.

To improve. the reuse degree.in SRE, we need to first determine the loop set for
strip-mining. This loop set must benefit from strip-mining operation. So it is may be

@ Springer



182 X. Yang et al.

Fig. 12 Strip-mining Li(A, B) doi=1,N, strip
Ly(A) Li(A(Li-strip), B(i,i+strip))
L, Lo(A(i,i+strip))
4414 b A 4 ik 1
““““““ . A A
array A :>§st=r1pj £ i = i
___________ > ‘\\\ . J .\\\ ) /,/ +
Yvy y A Iy 4
L, - » execution order

the maximal set that consists of potentially adjacent loops. We define the loop set for
strip-mining as follows.

Definition 6 Arbitrary potentially adjacent loop set can be used as a loop set for
strip-mining. And if the intersection of two loop sets for strip-mining is not empty,
the coalition of the two sets is also a loop set for strip-mining.

After data-centric loop reordering, the loop sets for strip-mining are relatively in-
tensive. To determine the optimum loop set for strip-mining, reuse distance is used
as the metric because it reflects the possibility of reuse in SRF. The maximal reuse
distance in the optimum loop set for strip-mining must be smaller than SRF. Thus,
the optimum loop set is the maximal one in which all the reuse can be optimized by
strip-mining.

Selecting the optimal strip size is also a crucial optimization for strip-mining tech-
nique. Smaller strip sizes are also advantageous, because they can make full use of
all the memory access components, reduce the startup and finishup time of the cor-
responding stream programs, and overlap the computation time with memory time
efficiently.

3.2 Fine-grained program transformations

Fine-grained program transformations refer to reordering computations and data in-
side loops by shortening the computation distances and data distances in the D&C
Matrix. This process aims at improving locality within loops and optimizing data ref-
erences. Therefore, the generated stream programs can achieve high locality in ker-
nels, high computational intensiveness, and low memory overhead of derived streams.
Note that since all the clusters work as SIMD fashion, the locality in kernels focuses
on enhancing the affinity for records in LRF and making a computation sequence
access the same record, which is unlike the traditional cache locality that aims at
centralizing all data referenced by the same computation.

3.2.1 Enhancing spatial locality inside loops
The spatial locality inside loops presents the spatial locality in the generated kernels,
namely the affinity for records.in LRE. Since LRF can’t make random access through

index support, the spatial locality inside loops must be successive and limited to the

@ Springer



Matrix-based streamization approach for improving locality 183

Fig. 13 Enhancing LRF spatial |
locality loop alignment
computations a
array ﬁ
record combination

capacity of LRF and the overhead caused by SPs. If an iteration operates on different
array elements with large data distance, the spatial locality is lost. In order to ref-
erence adjacent records simultaneously, we need to shorten the data distance in the
D&C Matrix through reordering the data accessed by the same computation as the
following formula, where a is an arbitrary element in the ith row array D;

ViV j(VYa € Di(mij(@) Nmjj(a £ 1) # ¢)) G

1. Loop alignment

The approach of loop alignment [18] is to align different data to the same computa-
tion by adding extra iterations and adjusting the indices of one of the statement. So
the data distance can be reduced to achieve fine spatial locality in the loop. For the
example in Fig. 13, each iteration of the loop produces values b(i), c(i), d (i) and uses
values b(i — 1), a(i) and a(i + 1). Value a and b are produced at each iteration and
must be kept until their last use by another statement of the loop. Here loop alignment
is used to optimize the use of the arrays a and b. We can see that the values of the
array a and b are consumed as soon as they are produced, and the spatial locality of
the generated stream program is enhanced. Figure 13 shows data distance is reduced
by performing loop alignment.

2. Combining elements as a record

All items of a record are placed on a cluster to perform the same computations. So
the spatial locality can be improved by combining elements referenced by the same
computation as a big record as shown in Fig. 13. At the same time, we must claim
attention to save the array boundary of the big record because the record may be
as large as the capacity of LRF [19]. This idea can avoid assigning dependent data
within an iteration to different clusters and make full use of LRF.

3.2.2 Improving temporal locality inside loops

Improving temporal locality inside loops aims at achieving high temporal locality
in the corresponding kernels of generated stream programs. The temporal locality
is enhanced if each array element is accessed many times successively inside loops.
We consider reducing the computation distance in the D&C Matrix as the following
formula by computation reordering to improve the temporal locality, where x is an
arbitrary iteration in the jth column loop L ;

¥ij (Yoo kegimaz ) Nm ' (x 1) # ¢)) @

@ Springer



184 X. Yang et al.

doi=11,N =A(1, 10) doj=1,N doi=1,N,S L: AG) L' AG)
A) = doi=11,N-10 doi=1,N doj=1,N A(i-10) Adi-1)
=AG-100 A@D= A() = do k =1, min(i+S-1, N)
=Ad Al) =
computations A(N-9,N) = computations computations
A YVY A A2 b yc A A a yc b A A
> N >
array A array A array A
(a) eliminate loop-carried dependence (b) tile the computation space (c) reduce the dependent threshold

Fig. 14 Enhancing temporal locality inside loops

1. Eliminating the loop-carried dependences

Data dependence tells us that two references point to the same LRF location. Thus,
the computation distance can be shortened by eliminating the loop-carried depen-
dence shown in Fig. 14a through array expansion, code replication, etc. [17], and
making dependence just exists within inner loops.

2. Tiling the computation space

If the loop-carried dependence between loops of a long stream can’t be converted
into the loop-independent dependence, we consider tiling the computation space [18]
given in Fig. 14b for reducing the computation distance. Above all, we need parti-
tion the computation space to several parts. Then change the order of these parts to
shorten the computation distance between the parts. So, the size and the order of these
computation parts play an important role in the LRF temporal locality.

3. Reducing the dependent threshold in the inner loop

In loops, the variables produced by the previous iteration are assigned to SPs for
the usage of the latter iteration. So, the allocation and usage of SPs are important
for enhancing temporal locality in kernels. We formulize the number of SPs kept
before iteration y as follows, where NUM (a) denotes the number of different values
of variable a

ZNUM(a) |Vi(Vz > y)(3a e ml.;l(z)(a < max(mi;l(y)))) (5)

To improve temporal locality in kernels, the fewest SPs are required to hold the
values between the source and sink of the dependence to compact the affinitive com-
putations, that is, minimize Y  NUM (a). To reduce SP overhead, we must reduce the
dependent threshold of inner loop shown in Fig. 14c, which denotes how many SPs
would be allocated.

3.2.3 Optimizing array references

The usage of derived streams makes stream organization flexibly, but it also brings
too much extra overhead of stream reordering and reloading. So, we must reduce the
amount, length and stride of derived streams to lessen the pressure of off-chip mem-
ory. Since array references are transformed to derived streams, some necessary loop
transformations. [ 18] are introduced.to.optimize array references to achieve optimal
derived streams.

@ Springer



Matrix-based streamization approach for improving locality 185

doi=1,N*2 doj=1,N doi=1,N*2,2 K=0
doj=1,N doi=1,N*2 dojZ1,N doj=1,N
A(i)=A(®) +B(1, ) A(i) = A®) + B(1, ) A()=A() + B(1,]) K=K + B(l, j)
A+ = AG+1) +B(1,j)  doi=1,N*2
AG) = A®) +K
computations D%qu 2¥N2 A4 W 2¥N2 D%;Q N I A A N
array B -

f—stride— ) o

(a) original access pattern (b) loop interchange (¢) unroll-and-jam (d) loop splitting

Fig. 15 Optimizing array references

1. Loop interchange

We can apply loop interchange to shorten the reference stride according to the refer-
ence pattern of the basic stream. For example, as shown in Fig. 15a, suppose array
B in the program is stored in column-major order. Obviously, the iterations of inner-
most loop perform computations on the rows of array B, thus produce large reference
stride. In order to shorten the stride of generated derived stream of B, we need to
perform loop interchange so that the innermost loop is striding over the contiguous
dimension, as shown in Fig. 15b.

2. Unroll-and-jam

Performing unroll-and-jam can reduce the length of derived streams by improving
computations per record. The essence of this transformation is to unroll the outer loop
to multiple iterations and then to fuse the copies of the inner loop. As an example,
consider the loop in Fig. 15¢. By performing this transformation, the new version of
the loop performs only one load of B(1, j) for each two references. Therefore, the
derived streams of B are shortened half length from 2*N? to N so as to reduce the
loading overhead of the derived stream.

3. Data-centric loop splitting

To achieve higher performance than unroll-and-jam, we propose a new transforma-
tion to eliminate derived streams, namely data-centric loop splitting. We distill the
computations that reuse data with large temporal span as self-governed loop. As pre-
vious example, the multiple loop can be split into two loops with computations on
B and A, respectively, due to the discontinuous temporal reuse of B(1, j). Thus, the
kernel can use the basic streams of B and A without derived overhead as shown in
Fig. 15d.

3.3 Stream organization optimization

After performing the program transformations above, an optimal intermediate code
is produced. Then the optimal intermediate code needs to be mapped to a stream
program through organizing kernels and streams effectively. Fine kernels can be gen-
erated by the above program transformations. However, efficient stream organiza-
tion can not be achieved by one-to-one mapping between array and streams. In other
words, every array variable can not be directly transformed to a basic stream, and
every.array-reference can.not be independently mapped to a derived stream. There-
fore, as shown in Fig. 4, some necessary optimizations of stream organization need

@ Springer



186 X. Yang et al.

do j=1N X A X
doi=1,N <JE C;
XG, j) = A+, j+1)
Y(, )=AG, 7+1) Y| a vy |
ifi=1 |
A(2, j+1)=100 e
AG, 7+1)=100 A foroo 100

(a) (® ©

Fig. 16 An example of selecting basic stream

to be introduced to the streamization process. We should firstly analyze the array
reference pattern based on the mapping function of mlfjl(x). Then according to the
analysis, we transform effective array regions of selected arrays as basic streams, and
produce derived streams after reusing different references on the same array, so as to
reduce the overhead of derived streams and improve the locality in SRF.

3.3.1 Basic stream selection

This optimization focuses on choosing appropriate arrays as basic streams. In order
to reduce the MEMORY access overhead and avoid maintaining storage consistency,
we need to select successive basic streams as operation objects of kernels [15]. For
example, if the basic stream D is organized as Fig. 6, it needs to derive a derived
stream as (c, e, ¢, d) which presents large derived stride; while if the basic stream D
is organized as (c, e, d), the derived stream is organized as relatively small stride to
reduce the overhead of off-chip DRAM reordering.

Though an array may be referenced many times in different reference pattern,
its corresponding basic stream will be generated as one copy. Figure 16a gives an
example program and Fig. 16b presents the corresponding data layout of array A
which is achieved from the D&C Matrix. After performing basic stream selecting on
the program, three data reference pattern will generate a same basic stream shown in
Fig. 16¢, which avoids unnecessary stream loading and storage overhead.

By analyzing the reference pattern and access region of all arrays based on the
D&C Matrix, the basic streams are organized according to the least common array
region of high access frequency. We formulate the basic stream layout of each ar-
ray as follows, where BAS(i) denotes the basic stream layout of the ith row array in
the D&C Matrix, f represents the time-consuming factor involving the invoking fre-
quency and the running time, which shows the importance of each loop for deciding
the basic stream layout

BAS(i) =V j(N(ORG(, j) - /1)) (6)
3.3.2 Derived stream generation
After selecting the required basic streams, we need to explore how to distribute these

arrays.on.clusters, thatis, derived stream generation. Some array reference optimiza-
tions are introduced in Sect. 3.2.3, which reorder the arrays with supplementing and

@ Springer



Matrix-based streamization approach for improving locality 187

2 |T —U‘ ’v— IL
doj=1,N HlElIE(=
doi=1,M
Z(i,j)=F, (V(i+1,j+1),V(i,j+1),UG+1,j+1),U+1), H¢_”—| j \"_j j

P(i,j),P(i+1,j),P(i+1,j+1),P(ij+1))

H(i,j) =Fu (P(i,j),U(i+1,j),U(L1), V(ij+1), V(i) C”¢—”\ j 3
CU(i+1,j) =Foo(P(i+1,§),P(i.§),UG+1,5))
CV(i,j+1) =Fo(P(i,j+1),P(i,j), V(i,j+1)) v | v j 'P_

(a) ®)
ZQ? uliAlY 4Rl U
HC: U ‘ vl ‘\ Bl i ZCE u v P P i)
CU(“F-‘ u : b | H{:j i
cvi v Pl|l|ep g

©) (d)

Fig. 17 Stream enlarging and stream reusing

updating the variant boundary by using dependence analysis and program transfor-
mation techniques. Based on the optimized array references, we need to reuse the
arrays and reduce the derived streams as many as possible. First, unifying different
derived streams by stream enlarging can combine the streams referenced by the same
computations as a long stream. Then if there is diversiform reference pattern and ac-
cess region of a stream in a kernel, we need to reuse the common block. The process
is denoted as stream reusing.

We explicate stream enlarging and stream reusing in detail according to an ex-
ample modified from a scientific application Swim in SPEC 2000. Figure 17a shows
the example that is a perfect loop nest and performs multiform reference pattern on
data A. Figure 17b presents the data layout of A in the original loop. After stream
enlarging, the access overhead of A is reduced by 26% (5/19), as shown in Fig. 17c.
With go on performing stream reusing on data linked by the same curve in Fig. 17c,
the access overhead is reduced by 57% (8/14) again and the number of input parame-
ters is reduced from 19 to 6, as shown in Fig. 17d.

4 Experimental results and analysis

To validate the effectiveness of our optimizing streamization approach, we perform
tests on 10 typical scientific application kernels as specified in Table 1. Nlage-5 is a
nonlinear algebra solver of two-dimensional nonlinear diffusion of hydrodynamics,
and. Transp.is.the time-consuming subroutines in Capao that is an optics applica-
tion. All the programs are Fortran versions, and they are compiled by three kinds of

@ Springer



X. Yang et al.

(sorqnop)
96T X 96T 9601 00S X 00S 79 X $9 X 9 TLOTET €IS X €16 az1s "qoId
I I 4 € I vl sKeiry#
VSON - 4dN adN adN 000g2ds ey
ooefde] LA4d 0D O dq wimg El

188

SyIRWYOUaq (] JO suoneoyroads | 9




Matrix-based streamization approach for improving locality 189

Fig. 18 The FT64 development
board

.-1_-5.1 .

L
LIRLS TR
i

Table 2 Comparison of different implementation for the scientific programs

Tests Swim EP MG CG DFFT Laplace Jacobi GEMM NLAG-5 Transp
Optivs. Orig 098 255 135 0.10 8.01 2.41 1.04 1.97 0.97 2.32
Optivs.Dire 2.62 118 323 121 1.79 2.75 4.65 5.06 225 2.83

compilers, respectively, including Intel’s compiler ifort (version 9.0) with the opti-
mization option -O3, SCompiler with the direct streamization, and SCompiler with
the optimizing streamization. The first compiling results (denoted as Orig) are exe-
cuted on a single-core Itanium 2 server. Itanium 2 runs at 1.6 GHz and the sizes of
the caches are 16 KB for the L1 cache, 256 KB for the L2 cache, and 6 MB for the
L3 cache. There is also a 4 GB off-chip memory with the bandwidth of 6.4 GB/s. The
latter two results (denoted as Dire and Opti) are executed on one FT64 stream proces-
sor, which is lain on the FT64 development board shown in Fig. 18. The parameters
of the FT64 processor are shown in Sect. 2.1.

The execution time is obtained by inserting the clock-fetch assembly instructions.
If the data size of the program is small, we eliminate the extra overheads (such as
system calls) by means of executing it multiple times and calculating the average
time consumption. As I/O overheads are hidden in our experiments, the CPU time is
nearly equal to the wall-clock time.

Table 2 illustrates the performance results of the optimizing streamization versions
(Opti) compared with the direct streamization versions (Dire) and the original For-
tran versions (Orig). It can be observed that compared with Itanium 2 system, our
optimizing streamization approach achieves high speedup of 5 programs (EP, DFFT,
Laplace, GEMM, and Transp), and provides comparable speedup of other 4 applica-
tions (Swim, MG, Jacobi, and NLAG-5). This is because our approach can efficiently
hide latency to achieve good performance of FT64, while Itanium 2 is highly sensitive
to memory latency. As for CG’s lowest speedup, it is because that its short arrays and
irregular memory reference pattern can not be optimized efficiently by loop trans-
formations. Table 2 also shows. that the optimizing streamization approach achieves
an average speedup of 2.76 over the direct streamization approach. It is certain that

@ Springer



190 X. Yang et al.

our approach can efficiently exploit the tremendous potential of FT64 for scientific
applications.

To evaluate our approach more amply, three key techniques proposed in Sect. 3
are evaluated respectively in the rest of this section.

4.1 Evaluate coarse-grained program transformations

The purpose of coarse-grained program transformations is to achieve high locality in
LRF and SRF, high computational intensiveness, and fine kernel granularity of the
generated stream programs.

SRF (or LRF)-to-memory throughput ratio is the ratio of the data throughput in
the SRF (or LRF) to that in the off-chip memory. It is used to measure the local-
ity in SRF and LRF. Figure 19 shows the SRF (LRF)-to-memory throughput ratios
with and without the coarse-grained program transformations during the streamiza-
tion process. It can be observed that all the optimizing versions can achieve higher
LRF-to-memory throughput ratios than that of the direct streamization versions. This
is because the locality within loops of these programs can be efficiently enhanced
by using the transformations among loops including loop reordering, loop fusion,
etc., and thus the abundant memory access of the generated stream programs are fo-
cused on LRF. Besides, the optimizing versions of MG, GEMM, Jacobi, DFFT, CG,
and Transp achieve higher SRF-to-memory throughput ratios than that of the direct
streamization versions, which means that they well exploit SRF locality. This is be-
cause the strip-mining of the loops in MG, GEMM and Jacobi can achieve the data
reuse, and the loop scheduling can be used to exploit the data reuse between loops
of DFFT, CG and Transp. But the SRF-to-memory throughput ratios of optimizing
versions of Swim, EP, Laplace, and NLAG-5 are comparable with that of the di-
rect streamization versions, which show these programs’ SRF only transfers the data
from memory to LRF. Since the reused data have been moved together, there is no
data reuse between kernels of these generated stream programs.

Figure 20 shows the effect on kernel size by applying our optimization compared
with the direct streamization programs, as well as the computations per word (C/W)
and the number of kernels (Kernels). We can observe that our optimization improves
the kernel granularity of all the programs. But the kernel granularity of Swim achieves
a little varying because it has huge data amount and irregular reference pattern, so
that the loops are difficult to be distributed or fused. The other applications can en-
large the code amount of kernels obviously to centralize all the computations (array

Fig. 19 SRF- and

100 O SRF_Dire @ LRF_Dire
LRF-to-memory throughput ° O SRF_Opti LRF_Opti
ratios = = —
-
]
a
<=
50
=
2
=
F

@ Springer



Matrix-based streamization approach for improving locality 191

Fig. 20 The variety of kernel 20
size

=g Dire /W g Opti C/W |
—X— Dire Kernels —&— Opti Kernelg

10
5
0
4&@{(3@666&0606@ QB%Q

Fig. 21 Cluster saturation 100

Cluster saturation (%)

expanding, loop fusion, and loop scheduling are used here), and thus their compu-
tational intensiveness is enhanced sharply except Transp. Transp that involves two
imperfectly loop nests applies loop distribution and loop fusion by array expanding
effectively, however, all arrays in Transp are referenced rarely leading a little variety
of computational intensiveness.

4.2 Evaluate fine-grained program transformations

Fine-grained program transformations are used to improve the locality in LREF, in-
crease the computational intensiveness, and optimize the derived streams of gener-
ated stream programs.

For improving the efficiency of the program, clusters are expected to be as busy as
possible. Figure 21 shows the cluster saturation for these applications with and with-
out fine-grained program transformations, which shows the saturation of the func-
tional units during stream processing influenced by the locality enhancement. Cluster
saturation depends on cluster’s stall time. When plenty of memory accesses hit the
LRF and the computations in clusters are abundant, the kernels need not wait for
the supply of required streams so that stall will hardly occur. Obviously, all the pro-
grams achieve large increment of the utilization of overall ALUs by applying our
streamization approach compared with the direct streamization versions. Because the
locality in LRF and the computational intensiveness of these programs are enhanced
by reordering computations and data within loops, such as reducing the dependent
threshold, eliminating the loop-carried dependence, loop tiling, etc. As for the lowest
cluster saturation of Swim, it is because its streams are in large size, and thus there
are. double buffers.in SRF and the memory overhead can’t be overlapped with com-
putations. The problem cannot be solved by fine-grained program transformations.

@ Springer



192 X. Yang et al.

Fig. 22 Computation rate 6

GFLOPS

Fig. 23 The reduction of
derived streams

Derived Streams

Figure 22 presents the computation rate of the stream applications measured in
GFLOPS. FT64’s peak performance can achieve 16GFLOPS. The results show that
the sustained performance of all the optimizing stream programs except CG reaches
4% to 36% of the peak performance, but the original stream programs only reach 1%
to 9% of the peak performance. This is because the computational intensiveness can
be increased and the memory access overhead can be reduced by introducing the fine-
grained program transformations, such as reducing the computation and data distance
in loops and array references optimizations. However, Swim and Transp still achieve
a little performance improvement because the fine-grained program transformations
don’t relate to the basic stream optimizations, so that there still exist overfull derived
streams in these programs.

4.3 Evaluate stream organization optimization

The stream organization optimization focuses on selecting optimum basic streams
and enabling stream reusing, so as to reduce the overhead of derived streams and
improve data reuse.

Figure 23 shows the reduction of derived streams with and without stream organi-
zation optimization in streamization process. It is obvious that the derived streams of
all the optimizing versions are reduced, which validates the effectiveness of our opti-
mization for stream organization. For the large reduction of derived streams of Jacobi,
GEMM, and Transp, it is because their basic streams are effectively selected accord-
ing to the practical array reference pattern. For the large reduction of derived streams
of MG, Laplace and NLAGE-5, it is because stream reusing is used to reuse the com-
mon. region of diversiform reference pattern. On the other hand, EP and DFFT have
a few data in the direct streamization versions, so the derived streams are lessened a

@ Springer



Matrix-based streamization approach for improving locality 193

Fig. 24 Percentages of memory | O Mem Dire O Ker Dire @ Mem Opti @ Kcr_Opli|
access and kernel execution — -

=
(=]

Percentage (%) _
un
=

little too. In Swim and CG, the choice of basic stream has little effect on stream orga-
nization owing to the complex data reference pattern, and thus the number of derived
streams is also reduced a little.

The overlap between computation and memory access is another important factor
that impacts a stream processor’s performance. Figure 24 demonstrates the distribu-
tion of memory access time and kernel execution time when programs with (denoted
as Mem_Opti and Ker_Opti) and without (denoted as Mem_Dire and Ker_Dire)
stream organization optimizations running on FT64, i.e., what percent the two parts
take up as to the total program execution time. Obviously, all the programs except CG
with the stream organization optimizations achieve less memory access proportion
and more kernel execution proportion compared with that of the direct streamization
versions. Especially, the memory access time and the kernel execution time of MG,
Laplace, Jacobi, and GEMM are comparable. It is certain that selecting optimum
basic streams and reusing derived streams can reduce the memory access overhead,
and thus lead to well hiding the memory access overhead with computation time. For
CG’s lowest total proportion of memory access and kernel execution, it is because
most of the time is consumed in SRF allocation and memory access preparation due
to its irregular memory reference pattern, which cannot be efficiently optimized by
the stream organization optimization.

5 Related work

Many media applications for stream processing have been previously studied, such
as stereo depth extraction, MPEG-2 encoding, QR decomposition, space-time adap-
tive processing, polygon rendering, FFT, convolution, DCT, and FIR [5-7]. Though
media applications are becoming the dominate consumer of stream processors, there
is an important effort to research whether scientific applications are suited for stream
processors, so as to fully exploit their powerful processing ability. Examples in-
cluding efficient fluid flow simulation and iterative solvers for sparse linear systems
[20-22] have been demonstrated to run on GPU, which is a graphic stream proces-
sor. Many linear algebra routines and scientific applications have been mapped to the
Merrimac supercomputer that is also stream architecture [23—-26]. Some dense and
sparse matrix applications and some mathematic algorithm such as transitive clo-
sure_have been. implemented on Imagine [27]. However, the prior studies focused
on how these idiographic applications were expressed as stream programs. There is

@ Springer



194 X. Yang et al.

little research on general automatic generation of stream programs on stream archi-
tectures. Furthermore, some existing researches on memory optimization for stream
architectures mostly concerned partial hardware melioration [28] and common cache
hierarchy optimization [29]. There are few studies on stream program optimiza-
tions through programming approach based on managing the memory hierarchy and
processing unites in stream processors. Paper [19] developed some programming op-
timizations for mapping scientific programs to Imagine. Our work is a further effort
to explore the systemic automatic streamization approach for scientific programs to
improve locality and parallelism on FT64, which is the first 64-bit stream processor
for scientific computing.

The optimization in this paper focuses on computation reorder and data layout
restructure. The classical computation optimizations [30-32] and data layout opti-
mizations [33-35] have introduced in traditional parallel compiling technique. How-
ever, the prior transformations aimed at optimizing latency-oriented cache hierarchy.
To implement optimization for bandwidth-oriented stream hierarchy, our work on lo-
cality and parallelism enhancement is different from those mentioned. Because it is
necessary to design special optimizations to exploit the hardware performance, such
as the clusters that run as SIMD pattern and the registers without indexed access.

This paper abstracts the relationship between loops and arrays as a matrix
to formulate the streamization problem. In the prior works, some authors also
propose a few intermediate structures used to improve locality, such as the lay-
out graph [36, 37], the data transformation matrix [38] and the communication-
parallelism graph [39], etc. However, these researches just considered data trans-
formations or iteration transformations within loops without exploring the relation
between loops. In comparison, we concentrate on the D&C Matrix for locality and
parallelism enhancement combining loop transformations and data transformations,
and especially the transformations between columns in the matrix can present the
potential of program restructure for computational intensiveness.

Therefore, to our knowledge, our work is the first study on the automatic genera-
tion of scientific stream programs on FT64 through combined computation and data
transformation to improve locality and parallelism.

6 Conclusion and future work

In this paper, we have presented a novel matrix-based streamization approach for
improving locality and parallelism to exploit the powerful processing ability of FT64.
Our specific contributions are as follows. We firstly formulate the problem on the
Data&Computation Matrix (D&C Matrix) that is proposed to abstract the relationship
between loops and arrays. Furthermore, we propose the key techniques for optimizing
streamization based on the matrix, including program transformations and stream
organization optimizations. Our approach is simple and generates stream programs
for ten scientific application kernels in our experiment. The experimental evaluation
shows that our optimizing streamization approach can effectively enhance the locality
in LRF and SRF, and improve the instruction and data parallelism of generated stream
programs.on FT64. With the effort in this work, a great deal of scientific applications
can be easily mapped to FT64 stream processor.

@ Springer



Matrix-based streamization approach for improving locality 195

In the future, our efforts will mainly focus on two aspects. First, we plan to explore
more streamization optimizations such as branch and reduction to exploit more ar-
chitectural features of FT64, so that our optimizing streamization can achieve higher
performance and wider applicability. Second, we would like to search more scientific
applications suited for FT64 by applying our optimization.

Acknowledgements We would like to thank Lab 610 of School of Computer Science in National Uni-
versity of Defense Technology for their efforts on this work. We also acknowledge the reviewers for their
insightful comments. This work was supported by NSFC (60621003).

References

1. Kapasi UJ, Rixner S, Dally W1J et al (2003) Programmable stream processors. IEEE Comput 54-62
2. Khailany B (2003) The VLSI implementation and evaluation of area-and energy-efficient streaming
media processors. Ph.D. thesis, Stanford University
3. Taylor M, Kim J, Miller J et al (2002) The RAW microprocessor: a computational fabric for software
circuits and general purpose programs. IEEE Micro 22(2):25-35
4. Burger D, Keckler SW, McKinley KS et al (2004) Scaling to the end of silicon with EDGE architec-
tures. Computer 37(7):44-55
5. Gordon MI, Thies W, Amarasinghe S (2006) Exploiting coarse-grained task, data, and pipeline paral-
lelism in stream programs. In: Proceedings of ASPLOS’06, California, USA
6. Andrew AL, Thies W, Amarasinghe S (2003) Linear analysis and optimization of stream programs. In:
Proceedings of the SIGPLAN’03 conference on programming language design and implementation,
San Diego, CA
7. Owens JD, Rixner S et al (2002) Media processing applications on the imagine stream processor. In:
Proceedings of the 2002 international conference on computer design
8. Yang X, Yan X, Xing Z et al (2007) A 64-bit stream processor architecture for scientific applications.
In: ISCA’07: Proceedings of the 34th annual international symposium on computer architecture. ACM
Press, New York, pp 210-219
9. Amarasinghe S et al (2003) Stream languages and programming models. In: Proceedings of the inter-
national conference on parallel architectures and compilation techniques 2003
10. Mattson P (2002) A programming system for the imagine media processor. Ph.D. thesis, Dept of
Electrical Engineering, Stanford University
11. Du J, Yang X et al (2007) Architecture-based optimization for mapping scientific applications to
imagine. In: ISPA’07: Proceedings of the 2007 international symposium on parallel and distributed
processing with applications, Ontario, Canada
12. Das A, Dally WJ, Mattson P (2006) Compiling for stream processing. In: PACT’06: Proceedings of
the 15th international conference on parallel architectures and compilation techniques. ACM Press,
New York, pp 33-42
13. Johnsson O, Stenemo M, ul-Abdin Z (2005) Programming & implementation of streaming applica-
tions. Master’s thesis, Computer and Electrical Engineering Halmstad University
14. Ahn JH, Dally WJ et al (2004). Evaluating the imagine stream architecture. In: Proceedings of the
annual international symposium on computer architecture 2004
15. Jayasena NS (2005) Memory hierarchy design for stream computing. Ph.D. thesis, Stanford Univer-
sity
16. Wolf ME, Lam M (1991) A loop transformation theory and an algorithm to maximize parallelism.
IEEE Trans Parallel Distrib Syst 2(4):452-471
17. Kuck D, Kuhn R et al (1981) Dependence graphs and compiler optimizations. In: Conference record
of the eighth annual ACM symposium on the principles of programming languages, Williamsburg,
VA, January 1981
18. Wolfe MJ (1996) High performance compilers for parallel computing. Addison-Wesley, Reading
19. Du J, Yang X et al (2006) Scientific computing applications on the imagine stream processor. In:
Proceedings of the 11th Asia-pacific computer systems architecture conference, Shanghai, China
20m Fan Zy QiwFretal(2004) Gpurcluster forhighiperformance computing. In: Proceedings of supercom-
puting conference 2004

@ Springer



196

X. Yang et al.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

Harris MJ, Baxter WV et al (2003) Simulation of cloud dynamics on graphics hardware. In: Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on graphics hardware, Switzerland,
pp 92-101

Bolz J, Farmer I, Grinspun E, Schr Oder P (2003) Sparse matrix solvers on the Gpu: conjugate gradi-
ents and multigrid. ACM Trans Graph 22(3):917-924

Dally WJ, Hanrahan P et al (2003) Merrimac: supercomputing with streams. In: Proceedings of su-
percomputing conference 2003

Erez M, Ahn J et al (2004) Analysis and performance results of a molecular modeling application on
Merrimac. In: Proceedings of supercomputing conference 2004

Erez M (2007) Merrimac—high-performance, highly-efficient scientific computing with streams.
Ph.D. thesis, Dept of Electrical Engineering, Stanford University

Erez M, Ahn J et al (2007) Executing irregular scientific applications on stream architectures. In:
(ICS’07): Proceedings of the 21th ACM international conference on supercomputing

Griem G, Oliker L (2003) Transitive closure on the imagine stream processor. In: Proceedings of the
5th workshop on media and streaming processors, San Diego, CA

Ahn J, Dally WIJ, Erez M (2007) Tradeoff between data-, instruction-, and thread-level parallelism in
stream processors. In: (ICS’07): Proceedings of the 21th ACM international conference on supercom-
puting

Sermulins J, Thies W et al (2005) Cache aware optimization of stream programs. In: Proceedings of
LCTES’05, Chicago, Illinois, USA

Wolf M, Lam M (1991) A data locality optimizing algorithm. In: Proceedings of ACM SIGPLAN’91
conference on programming language design and implementation, Ontario, Canada, pp 30-44
McKinley K, Carr S, Tseng CW (1996) Improving data locality with loop transformations. ACM
Trans Program Lang Syst

Li W (1993) Compiling for NUMA parallel machines. Ph.D. thesis, Cornell University

Kandemir M, Choudhary A et al (1999) A linear algebra framework for automatic determination of
optimal data layouts. IEEE Trans Parallel Distrib Syst 10(2):115-135

Cierniak M, Li W (1995) Unifying Data and control transformations for distributed shared memory
machines. In: ACM SIGPLAN IPDPS, pp 205-217

Kandemir M, Choudhary A et al (1998) Improving locality using loop and data transformations in an
integrated framework. In: Proceedings of international symposium on microarchitecture, pp 285-297

Kandemir M, Banerjee P et al (2001) Static and dynamic locality optimizations using integer linear
programming. IEEE Trans Parallel Distrib Syst 12(9):922-940

Kandemir M et al (1999) A graph based framework to detect optimal memory layouts for improv-
ing data locality. In: Proceedings of the 13th international parallel processing symposium, San Juan,
Puerto Rico, pp 738-743

O’Boyle M, Knijnenburg P (1996) Non-singular data transformations: definition, validity, applica-
tions. In: Proceedings of 6th workshop on compilers for parallel computers, pp 287-297

Garcia J, Ayguade E et al (1996) Dynamic data distribution with control flow analysis. In: Proceedings
of supercomputing conference 1996

Xuejun Yang received his M.Sc. and Ph.D. degree in computer science from the
National University of Defense Technology (NUDT), China, in 1986 and 1991, re-
spectively. He is a Full Processor and the head of the School of Computer Science
of NUDT. He is also the head of the Creative Compiler research group at NUDT.
His research interest lies in high performance computing, parallel computer archi-
tecture, high performance compiler and operating system.

@ Springer



Matrix-based streamization approach for improving locality 197

Jing Du received her B.Sc. degree in computer science from the National Univer-
sity of Defense Technology (NUDT), China, in 2002. Now she is a Ph.D. student in
the School of Computer Science of NUDT. She is a member of the Creative Com-
piler research group at NUDT. Her research interests include high performance
computing, parallel algorithms and porgramming.

Xiaobo Yan received his B.Sc. degree in computer science from the National Uni-
versity of Defense Technology (NUDT), China, in 2001. He is now a Ph.D. student
in the School of Computer Science of NUDT. He is a member of the Creative Com-
piler research group at NUDT. His research interests include high performance
computing, parallel computer architecture and compiler design.

Yu Deng received his B.Sc. and M.Sc. degree in computer science from the Na-
tional University of Defense Technology (NUDT), China, in 2000 and 2003, re-
spectively. He is now a Ph.D. student in the School of Computer Science of NUDT.
He is a member of the Creative Compiler research group at NUDT. His research
interests include high performance computing, parallel computer architecture and
compiler design.

@ Springer




Copyright of Journal of Supercomputing is the property of Springer Science & Business Media
B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without
the copyright holder's express written permission. However, users may print, download, or email
articles for individual use.



